Tài liệu tự học Toán 8

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Trần Thị Thơi
Ngày gửi: 15h:40' 23-07-2024
Dung lượng: 5.8 MB
Số lượt tải: 0
Nguồn:
Người gửi: Trần Thị Thơi
Ngày gửi: 15h:40' 23-07-2024
Dung lượng: 5.8 MB
Số lượt tải: 0
Số lượt thích:
0 người
NGUY N CHÍN EM
TÀI LI U T
H C TOÁN 8
Tự học Toán 8
Năm học 2019-2020
MỤC LỤC
PHẦN I
Đại số
1
CHƯƠNG 1 Phép nhân và phép chia đa thức
1
2
Nhân đa thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
Lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
Các hằng đẳng thức đáng nhớ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Phân tích đa thức thành nhân tử . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A
Tóm tắt lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B
Phân loại các dạng toán và phương pháp giải . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
C
Bài tập tự luyện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Chia đa thức. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A
Tóm tắt lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B
Phân loại các dạng toán và phương pháp giải . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
C
Bài tập tự luyện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CHƯƠNG 2 Phân thức đại số
1
2
3
4
3
A
A
3
3
47
Tính chất cơ bản của phân thức, rút gọn phân thức. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A
Tóm tắt lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B
Ví dụ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Các phép tính về phân thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
C
Bài tập tự luện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Một số phương pháp phân tích đa thức thành nhân tử . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A
Phương pháp tách một hạng tử thành nhiều hạng tử . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B
Phương pháp thêm và bớt cùng một hạng tử . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
C
Phương pháp hệ số bất định . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
D
Phương pháp xét giá trị riêng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
E
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Tính chia hết của số nguyên . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A
Chứng minh quan hệ chia hết. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B
Tìm số dư . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
C
Tìm điều kiện để chia hết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
D
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang i/477
GeoGebraPro
Tự học Toán 8
5
Năm học 2019-2020
Tính chia hết đối với đa thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A
Tìm dư của phép chia mà không thực hiện phép chia . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B
Sơ đồ Hoóc-ne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C
Chứng minh một đa thức chia hết cho một đa thức khác . . . . . . . . . . . . . . . . . . . . . . . 114
D
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
CHƯƠNG 3 Phương trình bậc nhất một ẩn
121
1
Khái niệm về phương trình. Phương trình bậc nhất. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2
Phương trình tích . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3
Phương trình chứa ẩn ở mẫu thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B
Các ví dụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
C
Bài tập tự luyện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Giải bài toán bằng cách lập phương trình . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
CHƯƠNG 4 Bất phương trình bậc nhất một ẩn
1
2
3
Liên hệ giữa thứ tự và phép cộng, phép nhân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B
Một số ví dụ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Bất phương trình bậc nhất một ẩn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Phương trình chứa ẩn trong dấu giá trị tuyệt đối. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A
4
155
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Bất phương trình chứa ẩn trong dấu trị tuyệt đối . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5
Bất phương trình tích. Bất phương trình thương . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6
Chuyên đề chứng minh bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7
A
Các tính chất của bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
B
Các hằng bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
C
Các phương pháp chứng minh bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
D
Bất đẳng thức với số tự nhiên . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
E
Vài điểm chú ý khi chứng minh bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
D
Áp dụng chứng minh bất đẳng thức vào giải phương trình . . . . . . . . . . . . . . . . . . . . . . 189
Tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
A
Giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
B
Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa một biến. . . . . . . . . . . . . . 210
C
Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức có quan hệ ràng buộc giữa
các biến . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
D
Các chú ý khi tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức . . . . . . . . . . 214
E
Bài toán cực trị với số tự nhiên . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang ii/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
PHẦN II
Hình học
CHƯƠNG 1 Tứ giác
1
2
3
5
6
7
8
9
237
Tứ giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Hình thang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Dựng hình bằng thước và compa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
A
4
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Đối xứng trục . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
C
Bài tập tự luyện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Hình bình hành . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
C
Bài tập tự luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Đối xứng tâm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
A
Lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Hình chữ nhật . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
A
Lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Hình thoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Hình vuông . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
CHƯƠNG 2 Đa giác. Diện tích đa giác
1
2
235
295
Đa giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Diện tích của đa giác. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang iii/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
CHƯƠNG 3 Chuyên đề
1
2
321
Tìm tập hợp điểm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
A
Hai tập hợp bằng nhau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
B
Các tập hợp điểm đã học . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
C
Ví dụ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
D
Thứ tự nghiên cứu và trình bày lời giải bài toán tìm tập hợp điểm . . . . . . . . . . . . . . 324
E
Phân chia các trường hợp trong bài toán tìm tập hợp điểm . . . . . . . . . . . . . . . . . . . . . 325
F
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Sử dụng công thức diện tích để thiết lập quan hệ về độ dài của các đoạn thẳng . . . . . . . . . . 338
A
Các ví dụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
CHƯƠNG 4 Tam giác đồng dạng
1
2
3
4
347
Định lý Ta-lét. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
A
Lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Định lý Ta-lét đảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
B
Bài tập tự luyện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Tính chất đường phân giác của tam giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
B
Bài tập tự luyện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Các trường hợp đồng dạng của tam giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Dạng 1. Trường hợp cạnh - cạnh - cạnh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Dạng 2. Trường hợp cạnh - góc - cạnh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Dạng 3. Trường hợp góc - góc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Dạng 4. Phối hợp các trường hợp cạnh - góc - cạnh và góc - góc . . . . . . . . . . . . . . . 396
Dạng 5. Dựng hình . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
5
CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG . . . . . . . . . . . . . . . . . . . . . . . . . . 403
A
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Dạng 1. Hai tam giác vuông đồng dạng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
B
Tỉ số các đường cao, tỉ số diện tích của hai tam giác đồng dạng . . . . . . . . . . . . . . . . 409
C
Ứng dụng thực tế của tam giác đồng dạng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
CHƯƠNG 5 Hình lăng trụ đứng. Hình chóp đều
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang iv/477
419
GeoGebraPro
Tự học Toán 8
1
Năm học 2019-2020
Hình hộp chữ nhật . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
A
B
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
Dạng 1. Hình hộp chữ nhật. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
Dạng 2. Diện tích . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Dạng 3. Thể tích . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Dạng 4. Các dạng khác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
CHƯƠNG 6 Đường thẳng và mặt phẳng trongkhông gian. Quan hệ song song
1
Hình lăng trụ đứng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
A
2
3
431
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Hình chóp đều. Hình chóp cụt đều . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
C
Tính các đại lượng hình học bằng cách lập phương trình . . . . . . . . . . . . . . . . . . . . . . . 443
Toán cực trị hình học . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
A
Bài toán cực trị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
B
Các bất đẳng thức thường dùng để giải toán cực trị. . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
C
Các chú ý khi giải toán cực trị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang v/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
PHẦN
I
ĐẠI SỐ
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang 1/477
GeoGebraPro
Tự học Toán 8
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Năm học 2019-2020
Trang 2/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
CHƯƠNG
1
PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC
BÀI
1
NHÂN ĐA THỨC
A LÝ THUYẾT
VÍ DỤ 1. Tính giá trị của biểu thức A = x4 − 17x3 + 17x2 − 17x + 20 tại x = 16.
- LỜI GIẢI.
Cách 1 Chú ý rằng x = 16 nên x − 16 = 0, do đó ta biến đổi để biểu thức chứa nhiều biểu thức
dạng x − 16.
A = x4 − 16x3 − x3 + 16x2 + x2 − 16x − x + 16 + 4
= x3 (x − 16) − x2 (x − 16) + x(x − 16) − (x − 16) + 4
= 4.
Cách 2 Trong biểu thức A, ta thay các số 17 bởi x + 1, còn 20 bởi x + 4.
A = x4 − x3 (x + 1) + x2 (x + 1) − x(x + 1) + x + 4
= x4 − x 4 − x3 + x3 + x2 − x2 − x + x + 4
= 4.
VÍ DỤ 2. Tìm ba số tự nhiên liên tiếp, biết rằng nếu cộng ba tích của hai trong ba số ấy, ta
được 242.
- LỜI GIẢI.
Coi x − 1, x, x + 1 là ba số tự nhiên liên tiếp. Ta có
x(x − 1) + x(x + 1) + (x − 1)(x + 1) = 242 ⇔ 3x2 − 1 = 242 ⇔ x2 = 81.
Do x là số tự nhiên nên x = 9. Ba số tự nhiên cần tìm là 8; 9; 10.
B BÀI TẬP
1. Nhân đơn thức với đa thức
BÀI 1. Thực hiện phép tính
1 3xn · (6xn−3 + 1) − 2xn · (9xn−3 − 1).
2 5n+1 − 4.5n .
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang 3/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
3 62 · 64 − 43 · (36 − 1).
- LỜI GIẢI.
1 3xn (6xn−3 + 1) − 2xn (9xn−3 − 1) = 18x2n−3 + 3xn − 18x2n−3 + 2xn = 5xn .
2 5n+1 − 4.5n = 5.5n − 4.5n = 5n .
3 62 · 64 − 43 (36 − 1) = (3.2)6 − (22 )3 (36 − 1) = 36 · 26 − 26 · 36 + 26 = 26 .
BÀI 2. Tìm x, biết
1 4(18 − 5x) − 12(3x − 7) = 15(2x − 16) − 6(x + 14).
2 5(3x + 5) − 4(2x − 3) = 5x + 3(2x + 12) + 1.
3 2(5x − 8) − 3(4x − 5) = 4(3x − 4) + 11.
4 5x − 3[4x − 2(4x − 3(5x − 2))] = 182.
- LỜI GIẢI.
1
4(18 − 5x) − 12(3x − 7) = 15(2x − 16) − 6(x + 14)
72 − 20x − 36x + 84 = 30x − 240 − 6x − 84
156 − 56x = 24x − 324
156 + 324 = 24x + 56x
80x = 480
x = 6.
2
5(3x + 5) − 4(2x − 3) = 5x + 3(2x + 12) + 1
15x + 25 − 8x + 12 = 5x + 6x + 36 + 1
7x + 37 = 11x + 37
4x = 0
x = 0.
3
2(5x − 8) − 3(4x − 5) = 4(3x − 4) + 11
10x − 16 − 12x + 15 = 12x − 16 + 11
−2x − 1 = 12x − 5
5 − 1 = 12x + 2x
14x = 4
2
x =
.
7
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang 4/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
4
5x − 3[4x − 2(4x − 3(5x − 2))] = 182
5x − 3[4x − 2(4x − 15x + 6)] = 182
5x − 3[4x − 2(−11x + 6)] = 182
5x − 3[4x + 22x − 12] = 182
5x − 78x + 36 = 182
−73x = 182 − 36
x = −2.
BÀI 3. Tính giá trị của các biểu thức
1 A = x3 − 30x2 − 31x + 1 tại x = 31.
2 B = x5 − 15x4 + 16x3 − 29x2 + 13x tại x = 14.
3 C = x14 − 10x13 + 10x12 − 10x11 + · · · + 10x2 − 10x + 10 tại x = 9.
- LỜI GIẢI.
1 Vì x = 31 nên x − 31 = 0 do đó ta biến đổi
A = x3 − 30x2 − 31x + 1
= x3 + x2 − 31x2 − 31x + 1
= x2 (x − 31) + x(x − 31) + 1 = 1.
2 Vì x = 14 nên x − 14 = 0 do đó ta biến đổi
B = x5 − 15x4 + 16x3 − 29x2 + 13x
= x5 − 14x4 − x4 + 14x3 + 2x3 − 28x2 − x2 + 14x − x
= x4 (x − 14) − x3 (14 − x) + 2x2 (x − 14) + x(14 − x) − x
= −x = −14.
3 Trong biểu thức C, ta thay các số 10 bởi x + 1.
C = x14 − (x + 1)x13 + (x + 1)x12 − (x + 1)x11 + · · · + (x + 1)x2 − (x + 1)x + (x + 1)
= x14 − x14 − x13 + x13 + x12 − x12 − x11 + · · · − x2 − x + x + 1
= 1.
BÀI 4. Tính giá trị của biểu thức sau bằng cách thay số bởi chữ một cách hợp lý
A=2
1
1
650
4
4
1
·
−
·3
−
+
315 651 105 651 315 · 651 105
- LỜI GIẢI.
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang 5/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
1
1
1
650
4
4
·
−
·3
−
+
315 651 105 651 315 · 651 105
3 3.651 + 650
4
4.3
2.315 + 1 1
·
−
·
−
+
=
Å 315 ã 651 315 Å 651 ã 315 · 651 315
1
1
1
1
1
1
1
·
−3
4−
−4·
·
+ 12 ·
= 2+
315
615
315
651
315 651
315
1
a =
315 .
Đặt
b = 1
651
Khi đó biểu thức có dạng
A = (2 + a) b − 3a (4 − b) − 4ab + 12a
A=2
= 2b + ab − 12a + 3ab − 4ab + 12a
2
.
= 2b =
651
2. Nhân đa thức với đa thức
BÀI 5. Thực hiện phép tính
1 A = (x − 1)(x5 + x4 + x3 + x2 + x + 1).
2 B = (x + 1)(x6 − x5 + x4 − x3 + x2 − x + 1).
- LỜI GIẢI.
1 Ta có
A = (x − 1)(x5 + x4 + x3 + x2 + x + 1)
= (x6 + x5 + x4 + x3 + x2 + x) − (x5 + x4 + x3 + x2 + x + 1)
= x6 − 1.
2 Ta có
B = (x + 1)(x6 − x5 + x4 − x3 + x2 − x + 1)
= (x7 − x6 + x5 − x4 + x3 − x2 + x) + (x6 − x5 + x4 − x3 + x2 − x + 1)
= x7 + 1.
BÀI 6. Tìm x, biết
1 (x + 2)(x + 3) − (x − 2)(x + 5) = 6.
2 (3x + 2)(2x + 9) − (x + 2)(6x + 1) = (x + 1) − (x − 6).
3 3(2x − 1)(3x − 1) − (2x − 3)(9x − 1) = 0
- LỜI GIẢI.
1
(x + 2)(x + 3) − (x − 2)(x + 5) = 6
(x2 + 5x + 6) − (x2 + 3x − 10) = 6
2x + 16 = 6
2x = −10
x = −5.
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang 6/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
2
(3x + 2)(2x + 9) − (x + 2)(6x + 1) = (x + 1) − (x − 6)
(6x2 + 31x + 18) − (6x2 + 13x + 2) = 7
18x + 16 = 7
18x = −9
1
x = − .
2
3
3(2x − 1)(3x − 1) − (2x − 3)(9x − 1) = 0
3(6x2 − 5x + 1) − (18x2 − 29x − 3) = 0
(18x2 − 15x + 3) − (18x2 − 29x − 3) = 0
14x = 0
x = 0.
BÀI 7. Cho a + b + c = 0. Chứng minh rằng M = N = P với M = a(a + b)(a + c); N = b(b + c)(b + a);
P = c(c + a)(c + b).
- LỜI GIẢI.
a + c = −b
Vì a + b + c = 0 ⇒ b + c = −a
a + b = −c.
Do đó
M = a(a + b)(a + c) = a(−c)(−b) = abc
(1).
N = b(b + c)(b + a) = b(−a)(−c) = abc
(2).
P = c(c + a)(c + b) = c(−b)(−a) = abc
Từ (1), (2) và (3) suy ra M = N = P .
(3).
BÀI 8. Chứng minh rằng các hằng đằng thức
1 (x + a)(x + b) = x2 + (a + b)x + ab.
2 (x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc.
- LỜI GIẢI.
Thực hiện phép toán nhân đa thức biến đổi VT thành VP.
BÀI 9. Cho a + b + c = 2p. Chứng minh hứng hằng đẳng thức
2bc + b2 + c2 − a2 = 4p(p − a).
- LỜI GIẢI.
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang 7/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
Ta có 4p(p − a) = 2p · (2p − 2a)
= (a + b + c)(a + b + c − 2a)
= (a + b + c)(b + c − a)
= (b + c)2 − a2
= 2bc + b2 + c2 − a2 .
BÀI 10. Xét các ví dụ 53 · 57 = 32021, 72 · 78 = 5616.
Hãy xây dựng quy tắc nhân nhẩm hai số có hai chữ số, trong đó các chữ số hàng chục bằng nhau, còn
chữ số hàng đơn vị có tổng bằng 10.
- LỜI GIẢI.
Ta xét hai số ab và ac thỏa mãn b + c = 10. Khi đó
(10a + b)(10a + c) = 100a2 + 10ac + 10ab + bc
= 100a2 + 10a(b + c) + bc
= 100a2 + 100a + bc
= 100a(a + 1) + bc.
Quy tắc: Nhân chữ số hàng chục với chữ số hàng chục thêm 1 rồi viết vào sau tích đó tích của hai
chữ số đơn vị (tích này viết bằng hai chữ số ).
BÀI 11. Cho biểu thức M = (x − a)(x − b) + (x − b)(x − c) + (x − c)(x − a) + x2 . Tính M theo a, b, c
1
1
1
biết rằng x = a + b + c.
2
2
2
- LỜI GIẢI.
Ta có M = (x − a)(x − b) + (x − b)(x − c) + (x − c)(x − a) + x2
= (x2 − ax − bx + ab) + (x2 − bx − cx + bc) + (x2 − ax − cx + ac) + x2
= 4x2 − 2x(a + b + c) + (ab + bc + ac)
(1).
1
1
1
Theo giả thiết x = a + b + c ⇔ 2x = a + b + c.
2
2
2
Do đó thay vào (1) ta được M = 4x2 − 4x2 + ab + bc + ac = ab + bc + ac.
BÀI 12. cho dãy số 1, 3, 6, 10, 15, · · · ,
n(n + 1)
, · · · . Chứng minh rằng tổng hai số hạng liên tiếp của
2
dãy bao giờ cũng là số chính phương.
- LỜI GIẢI.
n(n + 1)
2
(n − 1)n n(n + 1)
n2 − n + n2 + n
Theo giả thiết un−1 + un =
+
=
= n2 .
2
2
2
Vậy tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương.
Xét dãy số có số hạng tổng quát un =
BÀI 13. cho a gồm 31 số 1, số b gồm 38 số 1. Chứng minh rằng ab − 2 chia hết cho 3.
- LỜI GIẢI.
Vì a gồm 31 số 1 nên số a chia cho 3 dư 1.
vì b gồm 38 số 1 nê...
TÀI LI U T
H C TOÁN 8
Tự học Toán 8
Năm học 2019-2020
MỤC LỤC
PHẦN I
Đại số
1
CHƯƠNG 1 Phép nhân và phép chia đa thức
1
2
Nhân đa thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
Lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
Các hằng đẳng thức đáng nhớ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Phân tích đa thức thành nhân tử . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A
Tóm tắt lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B
Phân loại các dạng toán và phương pháp giải . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
C
Bài tập tự luyện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Chia đa thức. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A
Tóm tắt lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B
Phân loại các dạng toán và phương pháp giải . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
C
Bài tập tự luyện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CHƯƠNG 2 Phân thức đại số
1
2
3
4
3
A
A
3
3
47
Tính chất cơ bản của phân thức, rút gọn phân thức. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A
Tóm tắt lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B
Ví dụ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Các phép tính về phân thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
C
Bài tập tự luện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Một số phương pháp phân tích đa thức thành nhân tử . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A
Phương pháp tách một hạng tử thành nhiều hạng tử . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B
Phương pháp thêm và bớt cùng một hạng tử . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
C
Phương pháp hệ số bất định . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
D
Phương pháp xét giá trị riêng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
E
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Tính chia hết của số nguyên . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A
Chứng minh quan hệ chia hết. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B
Tìm số dư . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
C
Tìm điều kiện để chia hết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
D
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang i/477
GeoGebraPro
Tự học Toán 8
5
Năm học 2019-2020
Tính chia hết đối với đa thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A
Tìm dư của phép chia mà không thực hiện phép chia . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B
Sơ đồ Hoóc-ne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C
Chứng minh một đa thức chia hết cho một đa thức khác . . . . . . . . . . . . . . . . . . . . . . . 114
D
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
CHƯƠNG 3 Phương trình bậc nhất một ẩn
121
1
Khái niệm về phương trình. Phương trình bậc nhất. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2
Phương trình tích . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3
Phương trình chứa ẩn ở mẫu thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B
Các ví dụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
C
Bài tập tự luyện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Giải bài toán bằng cách lập phương trình . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
CHƯƠNG 4 Bất phương trình bậc nhất một ẩn
1
2
3
Liên hệ giữa thứ tự và phép cộng, phép nhân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B
Một số ví dụ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Bất phương trình bậc nhất một ẩn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Phương trình chứa ẩn trong dấu giá trị tuyệt đối. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A
4
155
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Bất phương trình chứa ẩn trong dấu trị tuyệt đối . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5
Bất phương trình tích. Bất phương trình thương . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6
Chuyên đề chứng minh bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7
A
Các tính chất của bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
B
Các hằng bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
C
Các phương pháp chứng minh bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
D
Bất đẳng thức với số tự nhiên . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
E
Vài điểm chú ý khi chứng minh bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
D
Áp dụng chứng minh bất đẳng thức vào giải phương trình . . . . . . . . . . . . . . . . . . . . . . 189
Tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
A
Giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
B
Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa một biến. . . . . . . . . . . . . . 210
C
Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức có quan hệ ràng buộc giữa
các biến . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
D
Các chú ý khi tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức . . . . . . . . . . 214
E
Bài toán cực trị với số tự nhiên . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang ii/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
PHẦN II
Hình học
CHƯƠNG 1 Tứ giác
1
2
3
5
6
7
8
9
237
Tứ giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Hình thang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Dựng hình bằng thước và compa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
A
4
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Đối xứng trục . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
C
Bài tập tự luyện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Hình bình hành . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
C
Bài tập tự luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Đối xứng tâm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
A
Lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Hình chữ nhật . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
A
Lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Hình thoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Hình vuông . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
CHƯƠNG 2 Đa giác. Diện tích đa giác
1
2
235
295
Đa giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Diện tích của đa giác. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang iii/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
CHƯƠNG 3 Chuyên đề
1
2
321
Tìm tập hợp điểm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
A
Hai tập hợp bằng nhau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
B
Các tập hợp điểm đã học . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
C
Ví dụ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
D
Thứ tự nghiên cứu và trình bày lời giải bài toán tìm tập hợp điểm . . . . . . . . . . . . . . 324
E
Phân chia các trường hợp trong bài toán tìm tập hợp điểm . . . . . . . . . . . . . . . . . . . . . 325
F
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Sử dụng công thức diện tích để thiết lập quan hệ về độ dài của các đoạn thẳng . . . . . . . . . . 338
A
Các ví dụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
CHƯƠNG 4 Tam giác đồng dạng
1
2
3
4
347
Định lý Ta-lét. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
A
Lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Định lý Ta-lét đảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
B
Bài tập tự luyện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Tính chất đường phân giác của tam giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
B
Bài tập tự luyện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Các trường hợp đồng dạng của tam giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
B
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Dạng 1. Trường hợp cạnh - cạnh - cạnh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Dạng 2. Trường hợp cạnh - góc - cạnh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Dạng 3. Trường hợp góc - góc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Dạng 4. Phối hợp các trường hợp cạnh - góc - cạnh và góc - góc . . . . . . . . . . . . . . . 396
Dạng 5. Dựng hình . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
5
CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG . . . . . . . . . . . . . . . . . . . . . . . . . . 403
A
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Dạng 1. Hai tam giác vuông đồng dạng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
B
Tỉ số các đường cao, tỉ số diện tích của hai tam giác đồng dạng . . . . . . . . . . . . . . . . 409
C
Ứng dụng thực tế của tam giác đồng dạng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
CHƯƠNG 5 Hình lăng trụ đứng. Hình chóp đều
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang iv/477
419
GeoGebraPro
Tự học Toán 8
1
Năm học 2019-2020
Hình hộp chữ nhật . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
A
B
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Các dạng toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
Dạng 1. Hình hộp chữ nhật. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
Dạng 2. Diện tích . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Dạng 3. Thể tích . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Dạng 4. Các dạng khác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
CHƯƠNG 6 Đường thẳng và mặt phẳng trongkhông gian. Quan hệ song song
1
Hình lăng trụ đứng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
A
2
3
431
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Hình chóp đều. Hình chóp cụt đều . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
A
Tóm tắt lí thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
B
Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
C
Tính các đại lượng hình học bằng cách lập phương trình . . . . . . . . . . . . . . . . . . . . . . . 443
Toán cực trị hình học . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
A
Bài toán cực trị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
B
Các bất đẳng thức thường dùng để giải toán cực trị. . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
C
Các chú ý khi giải toán cực trị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang v/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
PHẦN
I
ĐẠI SỐ
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang 1/477
GeoGebraPro
Tự học Toán 8
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Năm học 2019-2020
Trang 2/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
CHƯƠNG
1
PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC
BÀI
1
NHÂN ĐA THỨC
A LÝ THUYẾT
VÍ DỤ 1. Tính giá trị của biểu thức A = x4 − 17x3 + 17x2 − 17x + 20 tại x = 16.
- LỜI GIẢI.
Cách 1 Chú ý rằng x = 16 nên x − 16 = 0, do đó ta biến đổi để biểu thức chứa nhiều biểu thức
dạng x − 16.
A = x4 − 16x3 − x3 + 16x2 + x2 − 16x − x + 16 + 4
= x3 (x − 16) − x2 (x − 16) + x(x − 16) − (x − 16) + 4
= 4.
Cách 2 Trong biểu thức A, ta thay các số 17 bởi x + 1, còn 20 bởi x + 4.
A = x4 − x3 (x + 1) + x2 (x + 1) − x(x + 1) + x + 4
= x4 − x 4 − x3 + x3 + x2 − x2 − x + x + 4
= 4.
VÍ DỤ 2. Tìm ba số tự nhiên liên tiếp, biết rằng nếu cộng ba tích của hai trong ba số ấy, ta
được 242.
- LỜI GIẢI.
Coi x − 1, x, x + 1 là ba số tự nhiên liên tiếp. Ta có
x(x − 1) + x(x + 1) + (x − 1)(x + 1) = 242 ⇔ 3x2 − 1 = 242 ⇔ x2 = 81.
Do x là số tự nhiên nên x = 9. Ba số tự nhiên cần tìm là 8; 9; 10.
B BÀI TẬP
1. Nhân đơn thức với đa thức
BÀI 1. Thực hiện phép tính
1 3xn · (6xn−3 + 1) − 2xn · (9xn−3 − 1).
2 5n+1 − 4.5n .
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang 3/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
3 62 · 64 − 43 · (36 − 1).
- LỜI GIẢI.
1 3xn (6xn−3 + 1) − 2xn (9xn−3 − 1) = 18x2n−3 + 3xn − 18x2n−3 + 2xn = 5xn .
2 5n+1 − 4.5n = 5.5n − 4.5n = 5n .
3 62 · 64 − 43 (36 − 1) = (3.2)6 − (22 )3 (36 − 1) = 36 · 26 − 26 · 36 + 26 = 26 .
BÀI 2. Tìm x, biết
1 4(18 − 5x) − 12(3x − 7) = 15(2x − 16) − 6(x + 14).
2 5(3x + 5) − 4(2x − 3) = 5x + 3(2x + 12) + 1.
3 2(5x − 8) − 3(4x − 5) = 4(3x − 4) + 11.
4 5x − 3[4x − 2(4x − 3(5x − 2))] = 182.
- LỜI GIẢI.
1
4(18 − 5x) − 12(3x − 7) = 15(2x − 16) − 6(x + 14)
72 − 20x − 36x + 84 = 30x − 240 − 6x − 84
156 − 56x = 24x − 324
156 + 324 = 24x + 56x
80x = 480
x = 6.
2
5(3x + 5) − 4(2x − 3) = 5x + 3(2x + 12) + 1
15x + 25 − 8x + 12 = 5x + 6x + 36 + 1
7x + 37 = 11x + 37
4x = 0
x = 0.
3
2(5x − 8) − 3(4x − 5) = 4(3x − 4) + 11
10x − 16 − 12x + 15 = 12x − 16 + 11
−2x − 1 = 12x − 5
5 − 1 = 12x + 2x
14x = 4
2
x =
.
7
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang 4/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
4
5x − 3[4x − 2(4x − 3(5x − 2))] = 182
5x − 3[4x − 2(4x − 15x + 6)] = 182
5x − 3[4x − 2(−11x + 6)] = 182
5x − 3[4x + 22x − 12] = 182
5x − 78x + 36 = 182
−73x = 182 − 36
x = −2.
BÀI 3. Tính giá trị của các biểu thức
1 A = x3 − 30x2 − 31x + 1 tại x = 31.
2 B = x5 − 15x4 + 16x3 − 29x2 + 13x tại x = 14.
3 C = x14 − 10x13 + 10x12 − 10x11 + · · · + 10x2 − 10x + 10 tại x = 9.
- LỜI GIẢI.
1 Vì x = 31 nên x − 31 = 0 do đó ta biến đổi
A = x3 − 30x2 − 31x + 1
= x3 + x2 − 31x2 − 31x + 1
= x2 (x − 31) + x(x − 31) + 1 = 1.
2 Vì x = 14 nên x − 14 = 0 do đó ta biến đổi
B = x5 − 15x4 + 16x3 − 29x2 + 13x
= x5 − 14x4 − x4 + 14x3 + 2x3 − 28x2 − x2 + 14x − x
= x4 (x − 14) − x3 (14 − x) + 2x2 (x − 14) + x(14 − x) − x
= −x = −14.
3 Trong biểu thức C, ta thay các số 10 bởi x + 1.
C = x14 − (x + 1)x13 + (x + 1)x12 − (x + 1)x11 + · · · + (x + 1)x2 − (x + 1)x + (x + 1)
= x14 − x14 − x13 + x13 + x12 − x12 − x11 + · · · − x2 − x + x + 1
= 1.
BÀI 4. Tính giá trị của biểu thức sau bằng cách thay số bởi chữ một cách hợp lý
A=2
1
1
650
4
4
1
·
−
·3
−
+
315 651 105 651 315 · 651 105
- LỜI GIẢI.
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang 5/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
1
1
1
650
4
4
·
−
·3
−
+
315 651 105 651 315 · 651 105
3 3.651 + 650
4
4.3
2.315 + 1 1
·
−
·
−
+
=
Å 315 ã 651 315 Å 651 ã 315 · 651 315
1
1
1
1
1
1
1
·
−3
4−
−4·
·
+ 12 ·
= 2+
315
615
315
651
315 651
315
1
a =
315 .
Đặt
b = 1
651
Khi đó biểu thức có dạng
A = (2 + a) b − 3a (4 − b) − 4ab + 12a
A=2
= 2b + ab − 12a + 3ab − 4ab + 12a
2
.
= 2b =
651
2. Nhân đa thức với đa thức
BÀI 5. Thực hiện phép tính
1 A = (x − 1)(x5 + x4 + x3 + x2 + x + 1).
2 B = (x + 1)(x6 − x5 + x4 − x3 + x2 − x + 1).
- LỜI GIẢI.
1 Ta có
A = (x − 1)(x5 + x4 + x3 + x2 + x + 1)
= (x6 + x5 + x4 + x3 + x2 + x) − (x5 + x4 + x3 + x2 + x + 1)
= x6 − 1.
2 Ta có
B = (x + 1)(x6 − x5 + x4 − x3 + x2 − x + 1)
= (x7 − x6 + x5 − x4 + x3 − x2 + x) + (x6 − x5 + x4 − x3 + x2 − x + 1)
= x7 + 1.
BÀI 6. Tìm x, biết
1 (x + 2)(x + 3) − (x − 2)(x + 5) = 6.
2 (3x + 2)(2x + 9) − (x + 2)(6x + 1) = (x + 1) − (x − 6).
3 3(2x − 1)(3x − 1) − (2x − 3)(9x − 1) = 0
- LỜI GIẢI.
1
(x + 2)(x + 3) − (x − 2)(x + 5) = 6
(x2 + 5x + 6) − (x2 + 3x − 10) = 6
2x + 16 = 6
2x = −10
x = −5.
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang 6/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
2
(3x + 2)(2x + 9) − (x + 2)(6x + 1) = (x + 1) − (x − 6)
(6x2 + 31x + 18) − (6x2 + 13x + 2) = 7
18x + 16 = 7
18x = −9
1
x = − .
2
3
3(2x − 1)(3x − 1) − (2x − 3)(9x − 1) = 0
3(6x2 − 5x + 1) − (18x2 − 29x − 3) = 0
(18x2 − 15x + 3) − (18x2 − 29x − 3) = 0
14x = 0
x = 0.
BÀI 7. Cho a + b + c = 0. Chứng minh rằng M = N = P với M = a(a + b)(a + c); N = b(b + c)(b + a);
P = c(c + a)(c + b).
- LỜI GIẢI.
a + c = −b
Vì a + b + c = 0 ⇒ b + c = −a
a + b = −c.
Do đó
M = a(a + b)(a + c) = a(−c)(−b) = abc
(1).
N = b(b + c)(b + a) = b(−a)(−c) = abc
(2).
P = c(c + a)(c + b) = c(−b)(−a) = abc
Từ (1), (2) và (3) suy ra M = N = P .
(3).
BÀI 8. Chứng minh rằng các hằng đằng thức
1 (x + a)(x + b) = x2 + (a + b)x + ab.
2 (x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc.
- LỜI GIẢI.
Thực hiện phép toán nhân đa thức biến đổi VT thành VP.
BÀI 9. Cho a + b + c = 2p. Chứng minh hứng hằng đẳng thức
2bc + b2 + c2 − a2 = 4p(p − a).
- LỜI GIẢI.
Sưu tầm & biên soạn
Th.s Nguyễn Chín Em
Trang 7/477
GeoGebraPro
Tự học Toán 8
Năm học 2019-2020
Ta có 4p(p − a) = 2p · (2p − 2a)
= (a + b + c)(a + b + c − 2a)
= (a + b + c)(b + c − a)
= (b + c)2 − a2
= 2bc + b2 + c2 − a2 .
BÀI 10. Xét các ví dụ 53 · 57 = 32021, 72 · 78 = 5616.
Hãy xây dựng quy tắc nhân nhẩm hai số có hai chữ số, trong đó các chữ số hàng chục bằng nhau, còn
chữ số hàng đơn vị có tổng bằng 10.
- LỜI GIẢI.
Ta xét hai số ab và ac thỏa mãn b + c = 10. Khi đó
(10a + b)(10a + c) = 100a2 + 10ac + 10ab + bc
= 100a2 + 10a(b + c) + bc
= 100a2 + 100a + bc
= 100a(a + 1) + bc.
Quy tắc: Nhân chữ số hàng chục với chữ số hàng chục thêm 1 rồi viết vào sau tích đó tích của hai
chữ số đơn vị (tích này viết bằng hai chữ số ).
BÀI 11. Cho biểu thức M = (x − a)(x − b) + (x − b)(x − c) + (x − c)(x − a) + x2 . Tính M theo a, b, c
1
1
1
biết rằng x = a + b + c.
2
2
2
- LỜI GIẢI.
Ta có M = (x − a)(x − b) + (x − b)(x − c) + (x − c)(x − a) + x2
= (x2 − ax − bx + ab) + (x2 − bx − cx + bc) + (x2 − ax − cx + ac) + x2
= 4x2 − 2x(a + b + c) + (ab + bc + ac)
(1).
1
1
1
Theo giả thiết x = a + b + c ⇔ 2x = a + b + c.
2
2
2
Do đó thay vào (1) ta được M = 4x2 − 4x2 + ab + bc + ac = ab + bc + ac.
BÀI 12. cho dãy số 1, 3, 6, 10, 15, · · · ,
n(n + 1)
, · · · . Chứng minh rằng tổng hai số hạng liên tiếp của
2
dãy bao giờ cũng là số chính phương.
- LỜI GIẢI.
n(n + 1)
2
(n − 1)n n(n + 1)
n2 − n + n2 + n
Theo giả thiết un−1 + un =
+
=
= n2 .
2
2
2
Vậy tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương.
Xét dãy số có số hạng tổng quát un =
BÀI 13. cho a gồm 31 số 1, số b gồm 38 số 1. Chứng minh rằng ab − 2 chia hết cho 3.
- LỜI GIẢI.
Vì a gồm 31 số 1 nên số a chia cho 3 dư 1.
vì b gồm 38 số 1 nê...
 





